6 research outputs found

    Measurement and mathematical modeling of hyperthermia induced bioeffects in pancreatic cancer cells

    Get PDF
    Doctor of PhilosophyDepartment of Electrical and Computer EngineeringPunit PrakashSurgical resection is the standard of care for pancreatic cancer, although treatment outcomes remain poor, and a large fraction of the patient population are not surgical candidates. Minimally invasive interventions employing non-ionizing energy, such as image-guided thermal ablation, are under investigation for treatment of unresectable tumors and potentially for debulking and downstaging tumors. Tissue regions at the periphery of an ablation zone are exposed to sub-ablative thermal profiles (referred to as “mild hyperthermia”), which may induce a range of bioeffects including change in perfusion, immune modulation, and others. Bioeffects induced by heating are a function of intensity of heating and duration of thermal exposure. This dissertation presents a suite of tools for integrated in vitro experimental studies and modeling for characterizing bioeffects following thermal exposure to pancreatic cancer cells. An instrumentation platform was developed for exposing monolayer cell cultures to temperatures in the range 42–50°C for 3–60 minutes. The platform was employed to determine the Arrhenius kinetic parameters of thermal injury to pancreatic cancer cells (i.e. loss in viability) following heating. When coupled with bioheat transfer models, these parameters facilitate investigations of thermal injury profiles in pancreatic tumors following thermal exposure with practical devices. There has been growing interest in exploring the potential of thermal therapies for modulating tumor—immune system interactions, due in part to release of damage associated molecular patterns (DAMPs) from stressed tumor cells and their role in recruiting and activating antigen presenting cells. The in vitro thermal exposure platform was further expanded to allow for experimental measurement of extracellular DAMPs released from murine pancreatic cancer cells following heating to temperatures in the range 42 – 50°C for 3-60 mins. A model predicting the dynamics of heat-induced DAMPs release was developed and may inform the design of experiments investigating the role of heat in modulating the anti-tumor immune response. While in vitro experiments on monolayers are informative, 3D cell cultures (e.g., spheroid, organoids) provide an experimental platform accommodating multiple cell types in an environment that may be more representative of tumors in vivo. Furthermore, while the water-bath based in vitro platform applied for monolayers is well suited to achieving near-uniform temperature profiles, in vivo delivery of hyperthermia often yields a gradient of temperatures that is not achieved through water-bath based heating. Thus, an in vitro platform for exposing cells in 3D culture (co-culture of multiple cell populations) to 2.45 GHz microwave hyperthermia was developed. The platform includes a printed patch antenna and associated thermal management elements and was applied to study changes in gene expression profile of a 3D culture of pancreatic cancer cells and fibroblasts. This non-contact microwave heating approach may help enable additional studies for exploring the bioeffects of heat on cancer cells

    Experiments and computational models to characterize a radiofrequency ablation device for the treatment of rhinitis

    Get PDF
    Master of ScienceDepartment of Electrical and Computer EngineeringPunit PrakashChronic rhinitis is a common health problem described as inflammation of mucous membranes within the nasal cavity. Radiofrequency ablation (RFA) is a minimally invasive therapeutic option for thermal tissue destruction under investigation for treatment of rhinitis. The primary objective of this research is to develop an experimentally validated computational model to guide the design and optimization of RFA devices and systems with application to treating chronic rhinitis. In collaboration with Neurent Medical, we are developing a deployable RFA electrode array for treatment of chronic rhinitis. The impact of RFA device geometry, including electrode length (1.25 mm- 1.75 mm) and inter-pair spacing (3.6 mm- 5 mm), on thermal ablation zones was investigated, and simulation results were experimentally validated by conducting ex vivo experiments. Experimental results indicate that increasing electrode length as well as inter-pair spacing within electrode pairs from 1.25 mm to 1.75 mm, and from 3.6 mm to 5 mm respectively, can double the mean depth of ablation from 2 mm to 4 mm (while causing discrete surface ablation zones following RFA). Furthermore, the effects of different energy delivery strategies, including constant power as well as 30% and 60% duty cycle application on ablation results, were investigated through experiments in ex vivo tissue. Duty cycled energy delivery may prolong the ablation time depending on applied power level. However, in order to achieve sufficiently deep thermal lesions of 4 mm, thermal damage to tissue surface would be inevitable when using either constant or pulsed energy delivery. The impact of blood perfusion on ablation results was assessed with a computational model. The blood flow effect on ablation zones was negligible within the first 5 s of RFA in superficial regions of 0.5 mm distance from the tissue surface, likely due to a fast heating rate within target tissue. In summary, the computational modeling and experimental results presented in this report have identified suitable electrode geometry and energy delivery levels for achieving ablation depths of up to 4 mm in the nasal mucosa. These results support the potential of using a deployable RFA electrode for treatment of chronic rhinitis

    A Non-Invasive Hydration Monitoring Technique Using Microwave Transmission and Data-Driven Approaches

    No full text
    Dehydration in the human body arises due to inadequate replenishment of fluids. An appropriate level of hydration is essential for optimal functioning of the human body, and complications ranging from mild discomfort to, in severe cases, death, could result from a neglected imbalance in fluid levels. Regular and accurate monitoring of hydration status can provide meaningful information for people operating in stressful environmental conditions, such as athletes, military professionals and the elderly. In this study, we propose a non-invasive hydration monitoring technique employing non-ionizing electromagnetic power in the microwave band to estimate the changes in the water content of the whole body. Specifically, we investigate changes in the attenuation coefficient in the frequency range 2–3.5 GHz between a pair of planar antennas positioned across a participant’s arm during various states of hydration. Twenty healthy young adults (10M, 10F) underwent controlled hypohydration and euhydration control bouts. The attenuation coefficient was compared among trials and used to predict changes in body mass. Volunteers lost 1.50±0.44% and 0.49±0.54% body mass during hypohydration and euhydration, respectively. The microwave transmission-based attenuation coefficient (2–3.5 GHz) was accurate in predicting changes in hydration status. The corresponding regression analysis demonstrates that building separate estimation models for dehydration and rehydration phases offer better predictive performance (88%) relative to a common model for both the phases (76%)

    In Vitro Measurement and Mathematical Modeling of Thermally-Induced Injury in Pancreatic Cancer Cells

    No full text
    Thermal therapies are under investigation as part of multi-modality strategies for the treatment of pancreatic cancer. In the present study, we determined the kinetics of thermal injury to pancreatic cancer cells in vitro and evaluated predictive models for thermal injury. Cell viability was measured in two murine pancreatic cancer cell lines (KPC, Pan02) and a normal fibroblast (STO) cell line following in vitro heating in the range 42.5–50 °C for 3–60 min. Based on measured viability data, the kinetic parameters of thermal injury were used to predict the extent of heat-induced damage. Of the three thermal injury models considered in this study, the Arrhenius model with time delay provided the most accurate prediction (root mean square error = 8.48%) for all cell lines. Pan02 and STO cells were the most resistant and susceptible to hyperthermia treatments, respectively. The presented data may contribute to studies investigating the use of thermal therapies as part of pancreatic cancer treatment strategies and inform the design of treatment planning strategies

    In Vitro Measurement and Mathematical Modeling of Thermally-Induced Injury in Pancreatic Cancer Cells

    No full text
    Thermal therapies are under investigation as part of multi-modality strategies for the treatment of pancreatic cancer. In the present study, we determined the kinetics of thermal injury to pancreatic cancer cells in vitro and evaluated predictive models for thermal injury. Cell viability was measured in two murine pancreatic cancer cell lines (KPC, Pan02) and a normal fibroblast (STO) cell line following in vitro heating in the range 42.5–50 °C for 3–60 min. Based on measured viability data, the kinetic parameters of thermal injury were used to predict the extent of heat-induced damage. Of the three thermal injury models considered in this study, the Arrhenius model with time delay provided the most accurate prediction (root mean square error = 8.48%) for all cell lines. Pan02 and STO cells were the most resistant and susceptible to hyperthermia treatments, respectively. The presented data may contribute to studies investigating the use of thermal therapies as part of pancreatic cancer treatment strategies and inform the design of treatment planning strategies

    Experimental Validation of Diffraction Lithography for Fabrication of Solid Microneedles

    No full text
    Microneedles are highly sought after for medicinal and cosmetic applications. However, the current manufacturing process for microneedles remains complicated, hindering its applicability to a broader variety of applications. As diffraction lithography has been recently reported as a simple method for fabricating solid microneedles, this paper presents the experimental validation of the use of ultraviolet light diffraction to control the liquid-to-solid transition of photosensitive resin to define the microneedle shape. The shapes of the resultant microneedles were investigated utilizing the primary experimental parameters including the photopattern size, ultraviolet light intensity, and the exposure time. Our fabrication results indicated that the fabricated microneedles became taller and larger in general when the experimental parameters were increased. Additionally, our investigation revealed four unique crosslinked resin morphologies during the first growth of the microneedle: microlens, first harmonic, first bell-tip, and second harmonic shapes. Additionally, by tilting the light exposure direction, a novel inclined microneedle array was fabricated for the first time. The fabricated microneedles were characterized with skin insertion and force-displacement tests. This experimental study enables the shapes and mechanical properties of the microneedles to be predicted in advance for mass production and wide practical use for biomedical or cosmetic applications
    corecore